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Abstract 

 
In this study we explore the use of Bayesian model averaging (BMA) to address model uncertainty 

in identifying the determinants of Midwestern rural crime rates using county level data averaged 

over 2006-07-08.  The empirical criminology literature suffers from serious model uncertainty: 

theory states that everything matters and there are multiple ways to measure key variables.By using 

the BMA approach we identify variables that appear to most consistently influence rural crime 

patterns.  We find that there are several variables that rise to the top in explaining different types of 

crime as well as numerous variables that influence only certain types of crime. 

 

 

 

Introduction 

 
The empirical ecological criminology literature is vast and richly interdisciplinary.  But there are at least three 

problem areas that have created significant confusion over the policy implications of this literature.  First, the 

theoretical literature basically concludes that “everything matters” which makes empirical investigations difficult 

specifically related to model uncertainty.  Second, there is sufficient fragility within the empirical results to cast a 

pall over the literature (Chiricos, 1987; Patterson, 1991; Fowles and Merva, 1996; Barnett and Mencken, 2002; 

Bausman and Goe, 2004; Chrisholm and Choe, 2004; Messner, Baumer and Rosenfeld, 2004; Phillips, 2006; 

Authors).   Donohue and Wolfers (2005) along with Cohen-Cole, Durlauf, Fagan and Nagin (2009) note, for 

example, that the extensive empirical literature seeking to test the deterrent effect of capital punishment has yield 

nothing but contradictory and inconclusive results.   

Third, the limited empirical literature that focuses on rural crime suggests that what might help explain 

urban crime does not apply to rural (Authors).  Lee, Maume and Ousey’s (2003) work, for example, on 

comparing the role of poverty concentration, a socioeconomic characteristic that is a central driver of crime in 

nearly all theories of crime, on rural and urban crime.  They find that for urban higher poverty concentrations are 

associated with higher violent crime rates, as predicted by theory, but rural poverty concentration plays no role in 
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helping explain rural violent crime.   A comprehensive theory of crime should not have disclaimers such as “it 

works for cities but not small towns.”  

Model uncertainty exists when the research is (a) uncertain about the structure of the model, (b) 

uncertain about the estimates of the model parameters, even if we know the structure of the model, and (c) 

unexplained random variation in observed variables even when we know the structure of the model and the 

values of the model parameters (Chatfield 1995).This can range from model specification (e.g., omitted variable 

bias) to variable definition to functional form (e.g., linear vs. non-linear) to incorrect assumption about the error 

structure of the statistical processes.  Or as Western (1996, p167) states it: “(1) the selection of variables, (2) the 

choice of functional form, and (3) the stochastic specification.” 

In the empirical ecological criminology literature model uncertain comes in many forms including 

theories that tell us “everything matters” or a “laundry list” of potential control variables (Western 1996, 2001).  

Multiple ways to specific variables can also contribute to the problem of model uncertainty.  For example, 

Chisholm and Choe (2004) note that in the criminology literature income measures have ranged from median 

and average family and/or household income, to per capita income, to wages per job and what appears to be 

modest changes in variable definition can lead to inconsistent results.  Here model uncertainty centers not only 

on the selection of the right set of regressors but also how specific regressors are to be measured.  

Model uncertainty is also a concern when we consider different types of crime.  This source of 

uncertainty has often been referred as aggregation bias in the criminology literature.  For example, the drivers of 

domestic violence are fundamentally different from college students engaging in a bar fight or the decision of a 

burglar to use a weapon.  Our theories of crime generally talk in terms of criminal activity in the aggregate and 

when we think about or attempt to model different types of crime model uncertainty again becomes a concern. 

There exist several “model selection methods”, one specific type of model uncertainty, which have been 

suggested as a means to select a final set of regressors.  These methods range from step-wise regression where 

variables are systematically introduced into the model and some criteria such as changes in the equation F 

statistic,  or Mallows’   statistic are tracked to determine if a variable should or should not be included in 

the final model.  Other criteria include the Amemiya criteria (PC),Akaike Information Criteria (AIC), Sawa 

Bayesian Information Criterion and/or the Schwarz Bayesian Information Criterion (BIC) as well as the Jeffreys-

Bayes posterior odds ratio, among others (see Burnham and Anderson 2004, Judge et al., 1985, Kuha 2004 and 

Posada and Buckley 2004 for formal discussions).  Here models with different variable specifications yield some 

type of selection criteria metric (e.g., F, , , AIC, BIC, etc.) and the model with the highest (or lowest 

depending on the criteria metric) is selected as the“correct” model.Holleran, Beichner and Spohn (2010), for 

example, recently used the Bayesian Information Criterion (BIC) as the primary model selection criteria in a 

study of arrest and prosecutions patterns in rape cases using data for Kansas City, Missouri and Neema and 

Böhning (2010) use the BIC and AIC in modeling burglary and murder in Namibia.  

As noted by Fowles and Merva (1996 p168) within the empirical criminology literature: 

 
Conventional reporting often presents t statistics or p values for the best-fitting results or for those that 

may conform to a researcher’s prior beliefs.  Usually the best fit is uncovered after a model search.  In a 

model search, variables are typically dropped or introduced until search criteria are satisfied. 

 
But these approaches are not without their limitations ranging from assertions of “data mining” to the selection 

of arbitrary threshold criteria to problems associated with sample and parameter space sizes and in a decision 

theory context vagueness as to the corresponding loss or risk function.   In essence, there is no theoretical 

justification for using one method or criteria over another and if different selection methods yield different 

results the analyst is left at square one.As noted by Raftery (1995) it is possible that several of these alternative 

models can fit the data almost equally as well yet different selection methods can yield vastly different models.   

Perhaps a more fundamental problem with this approach is the implicit assumption that the final model 

specification is the only one consider out of many possibilities.By discarding all models except for one can yield 
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misleading results because by selecting one model from a large number of models one increases the probability 

of finding significant variables by chance alone (Raftery 1995).  Indeed, Fowles and Merva (1996 p168) 

conclude that “[t]he selective reporting of conventional statistics based on this sort of search may be misleading 

since the sampling properties of the estimators are not known.” 

As noted by Hansen (2007) model averaging has developed as an alternative to model selection 

methods.  In model averaging inferences are based on a weighted average over all models rather than one model.  

Draper (1995) and Wintle, et al. (2003) observe that there are two approaches to model averaging: discrete and 

continuous.  The ultimate goal of discrete model averaging is to arrive at a set of plausible models that can be 

weighted by some criteria such as Mallow’s  in the case of Hansen’s (2007) least squares model averaging.  

The weightings reflect the trustworthiness of each model; models that are more consistent with the data receive 

higher weights in the final averaging.   

Discrete model averaging is discrete because the final averages are constructed from a predetermined 

subset of all possible models.  Here the analyst selects a subset of potential models over which to conduct the 

averaging.  Continuous model averaging centers on the idea of model expansion where a single structural choice 

model is expanded in directions suggested by an analytic search.  Markov Chain Monte Carlo (MCMC) 

processes provide one mechanism by which iterative sampling of the full range of prior distributions of the 

parameters is undertaken.  By using a weighted average of a wide range of possible model specifications 

inferences can be made as to what the final set of regressors should contain and what the parameter estimates 

look like.  

Bayesian model averaging (BMA) has become a widely used approach to continuous model 

averaging.The challenge with the BMA approach is that it provides at least three different ways to move forward 

with the results:  examinethe full specification using the posterior mean (weighted average of the posterior 

means in the separate models) coefficient for each variable included in our set of variables (i.e., continuous 

model averaging); focus on the frequency of variables that are included in models that have a posterior 

probability greater than some selected threshold (i.e., discrete model averaging); finally focus on the single 

model with the highest posterior probability to determine which variables are to be further analyzed (i.e., discrete 

model averaging).  We suggest that by looking at the BMA results from these three different angles we gain 

better insight into the drivers of crime.    

The intent of the study reported here is to explore the application of Bayesian model averaging to 

address model uncertainty in our understanding of rural crime in the U.S.  Today, BMA has been widely used 

across a range of disciplines as a variable reduction method when too many potential regressors lead to model 

uncertainty.  The approach has been applied to improve the methods of weather forecasting (Raftery, et al., 2005) 

and modeling ecological systems (Wintle, et al., 2005) to economic growth (authors; Magnus, Powell and Prüfer, 

2010) and demography (Murphy and Wang 2001).  The BMA approach is finding wide application in medical 

research where model uncertainty is prevalent (e.g., Yeung, Bumgarner and Raftery 2005).  Although Bruce 

Western (1996, 2001) has considered the notions of model uncertainty in macrosociology and has explicitly 

suggested the use of Bayesian model averaging, to the best of our knowledge the BMA approach has seen only 

limited application in the criminology literature (e.g., Cohen-Cole, et al. 2009; Rafterty 1995).
1
 

To explore the potential use of BMA as a means to gain insights into the determinants of rural crime we 

use a sample of non-metropolitan counties from the Midwestern states.  By focusing attention on rural we hope 

to address a weakness to the literature identified by Lee and Ousey (2001) and Donnermeyer, Jobes and Barclay 

(2006); specifically rural crime has largely been ignored by criminologists.   Although Lee and Thomas (2010) 

note that there has been growing interest in rural crime the breath of the available empirical rural criminology 

literature is still too narrow to draw any reasonable conclusions.We introduce 43 potential determinants of crime, 

classified into seven different categories including components of both violent and property crime.  The FBI 

                                                 
1
 In a discussion of a BMA procedure written for the programming software RRaftery, Painter and Volinsky (2005) 

use crime data as an example and Raftery (1995) uses crime data as an example in a discussion of alternative model 

selection criteria.  In both case the discussion of crime is secondary to the development of Bayesian methods. 
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Unified Crime Reports data are averaged over the 2006-07-08 period and all other data are from 2007 unless 

otherwise noted. 

Because we are considering only the specification of the rural crime models we are not considering all 

potential sources of model uncertainty.  We do not consider function form and assume a simple linear form.  Nor 

do we consider the error structure of the underlying data generating processes.  Specifically we assume that the 

error structure is well-behaved.  We do address to a limited extent the sensitivity of the results to variable 

definitions by looking at different measures of income and poverty. 

Beyond these brief introductory comments the manuscript is composed of five additional sections.  First, 

we provide a brief overview of the theoretical criminology literature followed by an outline of the Bayesian 

model averaging method.  Our selection of variables is then discussed in relation to the theoretical criminology 

framework.  Empirical results are then presented and discussed and the study closes with a discussion of future 

work. 

 

Overview of Criminology Theory 

 
From our perspective there are three core or umbrella theoretical approaches that dominate the ecological 

empirical criminology literature: the Chicago School of social disorganization which takes a macro, ecological 

or community perspective and two micro or individual focused theories, anomie or strain, and rational choice.  

Although each approach tackles crime from a different direction there are significant and important overlaps.  

Where these theories overlap model uncertainty is reduced but where they do not overlap leads to greater model 

uncertainty. 

Social disorganization or social cohesion theory, widely known as the Chicago School of Criminology 

due to the pioneering work of Park and Burgess (1925) and Shaw and McCay (1931, 1942, 1969), emphasizes 

social, economic and political forces at the ecological  level.  Attention is focused on social capital broadly 

defined and notions of density of acquaintance across the community, village or neighborhood and is concerned 

with the socioeconomic deterioration of places and the social ties that link neighbors (Thorbecke and 

Charumilind 2002; Lederman, Loayza and Menendez 2002; Bouffard and Muftic 2006).
2
Spano and Nagy (2005) 

suggest that social disorganization theory can be restated simply as structural factors influence social networks 

which in turn influences social control.  Social control in turn drives crime.   

As noted by Jobes and his colleagues (2004), Wells and Weisheit (2004), Berg and DeLisi 

(2005),Donnermeyer (2007) and Li (2009) social disorganization theory has dominated the sociology literature 

that has examined rural crime.  Indeed, Bellair and Browning (2010: p497) conclude that “[s]ocial 

disorganization theory is one of the oldest and among the most well-respected sociological approaches to 

community crime.” Still, many such as Reisig and Cancino (2004) argue that social capital is too broad of a 

concept with respect to crime and should be more narrowly focused. 

 Sampson (2002, 2006) has argued that the notion of the village, neighborhood or community 

underpinning social disorganization theory is outmoded and to fully understand crime one must look at the 

                                                 
2
 Following the work of Coleman (1988), Flora and Flora (1993), Putnam (1993, 1995, 2000), and Turner (1999), 

Shaffer, Deller, and Marcouiller (2004) offer the following definition of social capital: 

 

 Social capital refers to features of social organization such as networks, norms, and social trust 

that facilitate coordination and cooperation for mutual benefit. Networks of civic engagement foster 

norms of general reciprocity and encourage the emergence of social trust. Social capital consists of the 

social networks in a community, the level of trust between community members, and local norms. These 

networks, norms and trusts help local people work together for their mutual benefit. (pp. 203–204) 

 

 Such a broad definition of social capital is attractive from a conceptual perspective, but it creates serious problems for 

research interested in developing specific empirical metrics. 
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behavior at the micro or individual level and how the individual is influenced by the community.  Lee and 

Thomas (2010) and their study of U.S. rural crime follow the lead of Tolbert and his colleagues (1998, 2002, 

2005) and talk in terms of “civic community”.  Here the idea of social networks (i.e., the community, village or 

neighborhood), a key element to social disorganization theory, is not sufficient to understand crime.  Rather one 

must think in terms of the willingness of the individual to become engaged in the community in a civic manner.  

The idea is that there is a fundamental difference between being “networked into the community” and 

willingness to engage.   

Mazerolle, Wickes and McBroom (2010) build on the work of Sampson (2002, 2006) and talk of 

“collective efficacy” and the willingness of individuals to become engaged.  Social networks are insufficient to 

deter crime and there must be a willingness to become engaged which acts as a deterrent to criminal activities.   

Belliar and Browning (2010) use the terminology of “informal control” and again how the concept of social 

networks is not sufficient.  By moving beyond the broad-based idea of social disorganization theory and the role 

of social networks (or community, village or neighborhood) to think in terms of “civic community,” “collective 

efficacy” and “informal control” helps focus on the willingness of the individual to become directly involved in 

helping deter crime.  This can range from the willingness to participate in neighborhood watch programs and 

calling the police, but also willingness to work with the police to help solve and prosecute crime. 

In rural density of acquaintance can be high and everyone knows everyone else but residents may be 

unwilling to engage law enforcement if a crime is committed.  Rural residents are more likely to keep 

community problems to themselves by viewing crime as a personal matter and not seek the help of law 

enforcement agencies (Laub 1981).   As noted by Weisheit and Donnermeyer (2000), rural law enforcement 

personal often voice frustration because of the conservative nature of many rural residents.  Many people in rural 

areas simply prefer to handle their own problems without seeking help from “outside”.  In a sense, social 

networks, density of acquaintance or social capital can be high but engagement with respect to crime may be 

low.    

From a modeling uncertainty perspective social disorganization theory the notion of social capital is too 

vague to lend itself to rigorous empirical testing.  The short-comings of earlier empirical studies to link broad 

notions of social capital to crime have driven much of the rethinking of social disorganization theory outline 

above.  Attempts to refine the thinking around social disorganization theory and notions of social capital are, in 

our framework, attempts to address model uncertainty from a theoretical perspective. 

 Anomie or strain theory focuses on conflicts between goals and means to achieve those goals (Fay 

1993).  Unlike social disorganization theory that looks at ecological or community (i.e., village or neighborhood) 

level, anomie theory tends to focus on individuals and behavior of those individuals adapt within the community 

setting.  The movement to “don’t snitch” in certain inner-cities conveys how personal attitudes toward crime can 

be influenced by the larger community.  While “civic community,” “collective efficacy” and “informal control” 

helps focus on the willingness of the individual to become directly involved in helping deter crime anomie 

theory focuses on the thinking of the potential criminal. In what Baumer and Gustafson (2007) refer to as 

Merton’s (1938, 1968) classic anomie theory there exists conflicts between the economic desires of the 

individual and the ability to achieve those desires. Unequal distribution of economic resources, wealth and/or 

income creates an “envy affect” (Kelly 2000) where those at the lower socioeconomic spectrum are jealous of 

those that have higher socioeconomic status.  There is a level of frustration where the poor either do not have the 

skills or the means to achieve higher levels of income and/or wealth.  Unsuccessful individuals become alienated 

from the community, social norms from the individual’s perspective come into question, and the strain results in 

criminal activity.  

An additional element of anomie theory is the explicit allowance of acceptable alternative means to 

achieving an end, referred to as innovation by Merton (1968).  A traditional example used within the literature is 

the powerful draw of illegal drug activity in the presence of few economic opportunities.  While drugs are 

generally associated with urban crime, the rise of methamphetamine in many rural communities is creating a 

rural parallel (Weisheit 2008). For low income persons, generally youth and young adults, faced with the choice 

of achieving limited economic success through low paying service jobs the potentially highly profitable illegal 



International Journal of Criminology and Sociological Theory, Vol. 4, No. 2, December 2011, 683-717 

 688 

drug trade become very attractive.  Classical anomie theory suggests that within stressed economic situations 

(e.g., unemployment, low employment opportunities, poverty, high levels of income inequality) any means 

possible to achieve one’s goals becomes acceptable behavior. 

Baumer and Gustafson (2007) assert that there has been a resurgence of interest in anomie theory as it 

relates to crime due to the introduction of “institutional” or “contemporary” anomie theory as developed by 

Messner and Rosenfeld (1994/2001/2007, 1997, 2006).  While Merton focused on economic conditions (i.e., 

economic conflict, economic inequality, economic envy effects) contemporary anomie theory introduces the role 

of non-economic institutions such as education, political and family.  Social structure, as thought about through 

these institutions, matters.  In the end, crime is a product of the balancing of these different institutional 

elements.  If economic outcomes dominate and a philosophy of “the ends justify the means” is acceptable then 

crime is acceptable and it will occur.  As in social disorganization theory community engagement through a 

range of different institutions moves our thinking about why crime occurs in one community but not another 

forward. 

Rational choice theory, which has been within the sociology literature for many years and can be traced 

back to Beccaris’ writings in 1764, was introduced into the economic literature by Fleisher (1963, 1966a, 

1966b), and Ehrlich (1973, 1975), but it is broadly attributed to the Nobel winning economist Gary Becker 

(1968, 1993).  This view of thinking about crime hypothesizes that crime is the product of rational decision 

making by individuals who are attempting to maximize economic well-being by comparing the benefits of crime 

versus the costs of apprehension and fines and/or imprisonment.  If the potential “loot” was sufficiently large, 

then the choice to commit a crime is rational.  Economists maintain that the power of the rational choice theory 

is that it is rooted on deductive theory of individual behavior that allows for direct and more exact empirical 

testing.  Specifically, the level of model uncertainty is minimized.  Formal derivations of the rational choice 

theory are available in Chiu and Madden (1998) and Chisholm and Choe (2004).    

On face value classical anomie as advanced by Merton and rational choice theory appear to be two sides 

to the same theory.  What separates the two is the notion of conflict and envy effects.  In classical anomie theory 

and more explicitly institutional anomie theory socially acceptable behavior plays an important role; economic 

frustration overrides what the individual may view as socially unacceptable behavior.  Despite the moral 

threshold of the potential criminal being included in the cost-benefit calculations of the potential criminal, in 

traditional rational choice theory norms and acceptable behavior are delegated to the backburner.   

 More recent derivations of the rational choice theory, however, have formally introduced the concept of 

social capital in the spirit of anomie and social disorganization theory (Fajnzylber, Lederman and Loayza 2002; 

Lederman, Loayza and Menéndez 2002; Messner, Baunmer and Rosenfeld 2004; Matsueda, Kreager and 

Huizinga 2006; Authors).  Here social capital directly enters into the likelihood of being captured; ignoring the 

complexities of institutional anomie theory communities with higher levels of social capital are more likely to 

have neighbor watch-type programs or are willing to work with law enforcement agencies when investigating a 

crime.  Potential criminals will explicitly consider levels of social capital and avoid communities with high 

levels. In essence, enhanced levels of social capital increases the risk of being caught hence reduces the incentive 

to commit crime. 

Unfortunately, as far as we are aware, the important notions of “civic community,” “collective efficacy” 

and “informal control” briefly outline above have not been formally introduced into the rational choice 

framework.  As currently structured, higher levels of social capital is interchangeably with civic engagement.  

Although outside the scope this applied study, social capital augmented rational choice theories need to be 

refined to think in terms of engagement.   

 An anomie-type interpretation could also be inferred from these social capital augmented rational choice 

theories.  If social capital is high within a community one could argue that there higher levels of positive peer 

pressure thus raising the moral threshold of the potential criminal; the ends do not necessarily justify the means.  

Within the rational choice framework going against one’s moral values would be interpreted as a cost of 

committing the crime.  Alternatively, higher levels of individual frustration through not achieving individual 

goals may cause one to question their moral position in committing crime.  If the social capital of the community 
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is low or deteriorating couple with frustration and/or envy, an individual person’s moral threshold may be 

lowered thus lowering the personal cost of committing a crime.  

What is important here from a model uncertainty perspective is how the three theories overlap.  

Common to all three are social capital and community norms, specifically disruptions in social capital and 

norms, along with limited economic opportunities such as high levels of poverty or chronic unemployment and 

high and/or raising levels of inequality.  This convergence of theoretical perspectives should reduce model 

uncertainty.  Unfortunately, the empirical literature is still rife with inconsistencies.  For example some studies 

have found that higher levels of average income tend to be associated with lower levels of crime (e.g., Reilly and 

Witt 1996; Gould, Weinberg and Mustard 2002; Authors) yet others find the opposite (e.g., Rephann 1999; 

Fajnzylbwe, Lederman and Loayza 2002; Mazerolle, Wickes and McBroom 2010).Income distribution has been 

a major focus of studies on crime (e.g., Kennedy, et al 1998; Kelly 2000; Carcach2000, 2001; Thorbecke and 

Charumilind 2002; Pratt and Godsey 2003) and is widely included as a control variable (e.g., Lederman, Loayza 

and Menendez 2002; Fajnzylber, Lederman and Loayza 2002;Baumer and Gustafson 2007; Li 2009; Authors) 

but again the results tend to be inconsistent (Fowles and Merva 1996). In a review of sixty empirical studies of 

crime Chiricos (1987) found that unemployment rates are a strong predictor of property crimes but had a poor 

relationship to violent crimes.  More current work, such as Carcach (2000, 2001), Authors (), Gould, Weinberg 

and Mustard (2002) and Reilly and Witt (1996) confirm these general results but others such as Timbrell (1990), 

Field (1990), Pyle and Deadman (1994) and Bausman and Goe (2004) have not been able to confirm this 

relationship. 

From this brief review of the core theoretical perspectives upon which most of the ecological empirical 

literature is based, model uncertainty can come from three sources.  First, the theories basically conclude that 

everything matters in understanding crime.  The resulting laundry list of potential control variables is almost by 

its very nature a definition of model uncertainty.  Second, while many of the concepts behind the drivers of 

crime may be more or less easily describe, how the concepts are empirically measured is vague which leads to 

another type of model uncertainty.  Third, results have been shown to vary across different types of crime 

introducing a third layer of model uncertainty.  As outlined in the introductory comments, model averaging 

methods, have been suggested as a superior alternative to traditional model selection methods to address model 

uncertainty. 

 

Bayesian Model Averaging
3
 

 
In a nutshell standard statistical practices ignore model uncertainty.  As described above the most common form 

of model uncertainty is generally dealt with by the use of a family of model selection methods such as equation F 

statistic,  or Mallows’ ,Amemiya criteria (PC), Akaike Information Criteria (AIC), Sawa Bayesian 

Information Criterion and/or the Schwarz Bayesian Information Criterion (BIC).  Or, even more crudely, a 

process of elimination based on individual variable t statistics.Analysts typically select a model from some class 

of models then proceed as if the model generated the data.  In addition to problems of vague theoretical 

foundations for selecting one method over another, critical values of these model selection methods, or rules to 

follow when methods provide inconsistent results, ignores a component of uncertainty leading to an increase in 

Type I error and/or over-confident inferences.  In the case of a relatively large number of potential variables this 

can be a very cumbersome and time consuming process.   

As an alternative the notion of model averaging has been introduced as a replacement for what can best 

be described asad hoc model selection approaches.  For illustrative purposes suppose that there are three 

variables (k=3) that are under considerationyielding eight potentialmodels (M1… M8  or 2
3
) 

 

                                                 
3
 This discussion draws on the presentations of Hoeting, Madigan, Raftery and Volinsky (1999), Raftery, Painter and 

Volinsky (2005), authors () and LeSage and Parent (2007). 
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  β1 β2 β3 

M1 1 1 1 

M2 0 1 1 

M3 0 0 1 

M4 1 1 0 

M5 1 0 0 

M6 0 1 0 

M7 1 0 1 

M8 0 0 0 

 

 

 
Draper (1995) and Wintle, et al. (2003) observation about discrete versus continuous model averaging can be 

easily seen by how many models (Mi) are explored.  Suppose that the analyst predetermines that only models 

that contain the first variable will be considered (M1, M4, M5 and M7) then we have a form of discrete model 

averaging.  If all potential models are considered (M1, …, M8) then a continuous form of model averaging is 

being followed. 

In the simplest sense model averaging would compute an average value of the estimated parameters, 

perhaps estimated with least squares, over the eight models:  where βiM is the value of the 

i
th
 parameter for the M

th
model.  The simplest averaging scheme presumes that each model carries the same 

weight (i.e., =1/8).  Clearly we can use the statistical strength of each individual mode (Mi) as information 

in refining the weighting scheme. Hansen (2007) suggests several potential such weighting schemes including  

 where AIC is the Akaike Information Criteria or 

 where BIC is the Bayesian Information Criteria. 

Bayesian model averaging (BMA) has been introduced to provide a coherent mechanism for account for 

the model uncertainty in terms of what variables should be included in the final specification of the 

model.Suppose that there is a set of models all of which may be “reasonable” based on the theory for estimating 

θ from a given data set y.   Suppose farther that a particular parameter θhas a common interpretation across all 

possible models M1,…,Mk. Instead of using one single model for making inferences about θ, Bayesian model 
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averaging constructs , the posterior density of θ given the data and is not conditional on any specific 

model (Mi).  Given Bayes formula BMA starts from specifying 

 
 

 prior probabilities  for all models M1,…,Mk under consideration, 

 prior densities   for all parameters θj of the model Mj. 

 

Given the prior information on the parameters for a given model, the integrated likelihood  of model Mj is 

given by 

 

. 

 

Here  is also the marginal density of the observed data.  Using Bayes theorem the posterior density of the 

model is obtained as 

 

 
 
The posterior density of µ for each model is then computed assuming that model Mj is true and is denoted as 

.  Combining these elements we can express the posterior density of the quantity of interest as 

 
 

Instead of using a single conditional posterior density  assuming model Mj to be true, the posterior 

density  is a weighted average of the conditional posterior densities, where the weights are the posterior 

probabilities of each model.  By not conditioning on any given model, Bayesian model averaging does not make 

the mistake of ignoring model uncertainty.   

 The posterior mean is also a weighted average of the posterior means in the separate models, or 

 
 

from properties of the mixture distributions.  The posterior variance may be derived from 

 

 
 

There are several practical difficulties in implementing Bayesian model averaging.  The integrals in the 

integrated likelihood( ) are hard to compute.  The number of terms in the integrated likelihood can be 

enormous given the potential number of variables to be introduced.  For example, if the number of variables 

included is 10 (k=10) then there are 2
10

, or 1,024 possible models. Specification of the prior distribution over all 
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the competing models is unclear. Finally, choosing the class of models to average over becomes the fundamental 

modeling task and there are several competing “schools of thought” (i.e., discrete versus continuous) that have 

emerged over how to proceed. 

As noted in the introductory comments there are at least three potential ways to proceed given the results 

of the BMA.  The first is to examine the full specification using the posterior mean (weighted average of the 

posterior means in the separate models) coefficient for each variable included in analysis.  This approach is most 

consistent with the intent of BMA to take advantage of the information contained in as many models as possible.  

Second, focus on the frequency of variables that are included in models that have a posterior 

probability  greater than some selected threshold, typically one percent.  The third and final approached 

we will examine focuses on the single model with the highest posterior probability to determine which variables 

are to be further analyzed.   The last two methods are more directly filtering processes in the sense that the 

variables identified as being relevant must be further analyzed in separate regression type analysis (i.e., discrete 

as opposed to continuous).  Thus for the last two methods one could say that the BMA reduces to a two-step 

process.  The BMA is used to select the final set of variables to be used in a second set of analysis. 

 Magnus, Powell and Prüfer (2010) maintain that these problems with BMA suggest that alternatives such 

as weighted average lease a squares (WALS) could be considered.  First, WALS treats our lack of knowledge 

about the priors in a more direct manner thus yielding better risk profiles and avoiding unbounded risk in 

particular.  Indeed, the power of a Bayesian approach is that the analyst can use prior information about the 

underlying model, but in practice we seldom have that prior information in a usable form.  Second, as the 

parameter space (k) raises the computational demands of BMA explodes (2
k
) while the computing time of WALS 

is on an order of k (versus 2
k
).  Because of the computational demands of BMA Magnus, Powell and Prüfer 

(2010) correctly point out that exact computational of a complete BMA is seldom carried out.  To address these 

two problems a Markov Chain Monte Carlo (MCMC) method must be used to move the BMA approach forward.   

 In the application reported here we use the BMA algorithms developed by LeSage and his colleagues 

(e.g.,LeSage and Parent 2007).  Building on the prior work of Raftery, Madigan and Hoeting (1997) as well as  

Fernandez, Ley and Steel (2001a, 2001b) LeSage adopts a Markov Chain Monte Carlo (MCMC) model 

composition approach introduced by Madigan and York (1995).  Here the process moves through the potentially 

large model space and sample regions of high posterior support minimizing the need to consider all possible 

models.  Define a neighborhood  for each  (the set of all possible models).  Now define a 

transition matrix q by setting and .  If the 

chain is currently in state M proceed by drawing M’from .  M’ is accepted with probability 

. 

Otherwise the chain remains in state M.  Using a Metropolis-Hastings sampling scheme LeSage is able to 

implement a Markov Chain Monte Carlo routine to move through the modeling space.   

 As outlined above we explore the drivers of rural crime in the Midwest in three ways using the Bayesian 

model averaging approach.  First, we consider the full specification using the posterior meancoefficients which 

is closest in intent of the original formulation of BMA.  Second, using a posterior probability greater 

than one percent we examine the frequency of variable inclusion.  For example, if for property crime there are 

half a dozen potential models that have a posterior probability greater than one percent, how frequently are 

individual variables contained in those half dozen models.  Finally, we use the single model with the highest 

posterior probability to determine which variables are to be further analyzed.  We then take that “final” 

specification and estimate individual models using simple least squares. 
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Model Specification 

  
Our variable selection is rooted on our interpretation of the theoretical literature along with the vast empirical 

literature as well as the modest but growing pool of work on rural crime (e.g., Li 2009; Authors; Lee and 

Thomas 2010).   We hypothesize that the empirical determinants of rural crime can be classified into seven broad 

categories: 

 Scale-Size of the County, 

 Income, 

 Poverty-Unemployment-Income Distribution, 

 Socio-demographic, 

 Housing Structure, 

 Social-Political Structure, 

 Change Characteristics. 

 

Larger communities are more likely to experience higher rates of crime along with those communities that 

have lower levels of income as well as higher levels of unemployment.  Communities that tend to have a larger 

share of youth will tend to have higher crime while communities with an older population will have less crime.  

Communities that have a higher ethnic diversity will tend to see higher levels of crime.  Communities with a 

higher share of people living in their own detached homes will tend to experience lower levels of crime.  

Communities that are experiencing more rapid change will tend to have higher levels of crime.   The social-

political structure set of variables includes a measure of social capital defined below along with a set of variables 

intended to capture the attitudes of local residents including measures to capture the “creative” and “bohemian” 

classes in the spirit of Richard Florida (2002, 2003). 

 

Individual variables within each group include: 

 

Scale/Size of County 

 Population Density 

 Population 

 Number of Jobs 

 Adjacent to a Metro County 

 Remote Rural County 

  

Income Levels 

1. Per Capita Income 

2. Earnings Per Job 

3. Wage and Salaries per Job 

  

Poverty-Unemployment-Income Distrbution 

 Unemployment Rate 2006 

 Per Capita Unemployment Insurance Income 

 Poverty Rate 2004 
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 Per Capita Income from Income Maintenance Programs 

 Gini Coefficient of Income Equality 1999 

  

Socio-demographic 

1. Percent of Population Age 15 to 24 

2. Percent of Population Age 75 plus 

3. Percent of the Population Caucasian 

4. Percent of the Population African American 

5. Percent of the Population Hispanic 

6. Ethnic Diversity Index 

7. Percent of those over 25 with a High School Education 

8. Percent of those over 25 with a Bachelor's Degree 

9. Percent of the Population Foreign Born 2000 

10. Percent of the Population Non-English Speakers at Home 2000 

 

Home Structure 

1. Percent of Houses Owner Occupied 2000 

2. Percent of Households Living in Multiple Unit Housing 2000 

  

Social - Political Structure 

1. Creative Class Index 2000 

2. Bohemian Class Index 2000 

3. Social Capital Index 

4. Percent of Voters Voting Republican in 2004 Presidential Election 

5. Percent of Voters Voting Democratic in 2004 Presidential Election 

6. Per Capita Local Government General Revenues 2002 

 

Change Characteristics  

1. Net Migration 2000-2006 

2. Percent Change in Per Capita Income 

3. Percent Change in Earnings per Job 

4. Percent Change in Wages and Salary per Job 

5. Percent Change in Number of Jobs 

6. Percent Change in the Unemployment Rate 2000-2006 

7. Percent Change in Per Capita Unemployment Insurance Income 2000-2007 

8. Percent Change in Poverty Rate 2000-2004 

9. Percent Change in Per Capita Income from Income Maintenance Programs 

10. Percent in Same Household 1995-2000 

11. Percent Change in Medicate Payments 2000-2005 

12. Percent Change in Gini Coefficient 1989-1999 
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Most of these variables are self-explanatory except for a few indices that are used.
4
 Unless otherwise 

noted all variables are for 2007 and the change variables are for 2000 to 2007.  Notice that several of the 

variables are very similar and could be viewed as proxies.  For example, one might expect per capita income, 

earnings per job and wage and salary income per job to all be highly correlated and perhaps acceptable 

substitutes for each other.  For all practical purpose this represents a certain form of model uncertainty.  

Alternative, change in the unemployment rate and changes in per capita unemployment insurance income should 

also be highly correlated.  But if we return to the observation of Chrisholm and Choe (2004) what might appear 

to be modest changes in variable definitions can alter the empirical results.  This speaks to the subtle 

complexities of the drivers of crime and/or high levels of model uncertainty. 

The Ethnic Diversity Index is drawn from Rupasingha, Goetz and Freshwater (2006) and Rupasingha 

and Goetz (2007) who in turn build on Alesina, Baqir and Easterly (1999) and is an ethnic fractionalization index 

measuring ethnic diversity in counties.  This index measures the probability that two randomly drawn people 

from a county belong to different ethnic groups.  The Diversity Index  where τ is the share of 

population self-identified as a specific ethnic group  (Caucasian, African-American, Hispanic, Asian, 

Native American, other).  Based on social disorganization theory the greater the ethnic diversity the higher the 

potential for crime. 

The Creative Class Index follows from the work of Richard Florida as interpreted by David 

McGrahanan at USDA ERS.
5
  Florida speaks in terms of the role of professions in what he calls the “creative 

class” in endogenous innovative growth.  Communities with a higher share of employment in the “creative 

class” increases the likelihood of have people that embody Schumpeter’s innovative entrepreneur who are 

essential to economic growth.  McGrahanan uses detailed occupational data from the 2000 Census to build a 

Creative Class Index for U.S. counties.  Occupations included in the Index include executives, financial officers, 

computer specialist and mathematicians to name just a view.  We maintain that if Florida is correct, one would 

expect to see lower crime rates in communities that have a higher share of occupations composing the Creative 

Class. 

 The Bohemian Class Index follows in the spirit of the Creative Class Index and attempts to capture what 

Wojan, Lambert and McGranahan (2007) refer to as the “creative mllieu”.  By focusing on the “artisan class” of 

workers Wojan and his colleagues focus attention on a more narrow definition of Florida’s creative class.  The 

“Bohemians” (visual, applied and performing artists and authors) do not include computer scientists or 

marketing executives but rather people who wish to experiment and be creative in other mediums.  Wojan, 

Lambert and McGranahan (2007 p712) suggest that “[i]f creative people are in fact attracted to creative places, 

then the location decisions of artists should reveal these preferences.“   The Bohemian Class Index mirrors the 

Creative Class Index by using occupational data but focuses on artisans.  As with the Creative Class Index, we 

expect rural counties that have higher concentrations of Bohemians to have lower overall levels of different 

types of crime. 

 The Social Capital Index draws from the work of Authors () who in turn build on the work 

ofRupasingha, Goetz and Freshwater (2006) and Rupasingha and Goetz (2007).   Data on organizations that 

either directly contribute to social capital or serve as proxies for engaged citizens who define social capital at the 

local level.  Data are drawn from four sources: County Business Patterns, the National Center for Charitable 

Statistics for non-profits, Association of Religion Data Archives for number of churches, synagogues and 

                                                 
4
 Note that there are 43 variables included here.  Hence k=43 and the potential number of models that could be 

estimated is 8,796,093,022,208.  Now expand to consider seven different categories of crime (7x2
43

).  The observation of 

Magnus, Powell and Prüfer (2010) strikes home in terms of computational demand; clearly without the Markov Chain 

Monte Carlo approach, the computational challenges would be almost insurmountable. 
5
 See http://www.ers.usda.gov/Data/CreativeClassCodes/methods.htm for details and to view the Index. 

http://www.ers.usda.gov/Data/CreativeClassCodes/methods.htm
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mosques within a community and a new data set on cooperative business enterprises compiled by the University 

of Wisconsin Center for Cooperatives.  The one common metric across all four sources is a simple count of the 

number of organizations.  Hence, our metric is a simple summation of a selected number of different types of 

organizations that contribute to social capital all on a per one thousand persons basis.  Clearly a simple head 

count of different organizations masks the size or scale of individual organizations.  We could proxy firms by 

employment size, or non-profits based on financial data from their IRS 990 filing data and churches by 

membership size, the heterogeneity across different scale metrics makes building a scalar index difficult. 

 

 

 

The specific types of organizations include: 

 

 Business, Professional and Labor Organizations per 1K Persons 

 Civic and Social Organization per 1K Persons 

 Number of Churches per 1K Persons 

 Number of Non-Agricultural Cooperatives per 1K Persons 

 Num

ber of Non-Profits Public and Social Advocacy Organizations per 1K Persons 

 Number of Non-Profit Sports Organizations per 1K Persons 

 Number of Non-Profit Youth Organizations per 1K Persons 

 Number of Non-Profit Community Development Organizations per 1K Persons 

 
 

By construction, the higher the number of these types of organizations we argue is associated with higher levels 

of social capital and in turn lower crime rates. 

Despite serious limitations that have been widely discussed in the literature (e.g., Lott and Whitley 2003) 

the FBI Unified Crime Reports is the best data for rural crime that is available in the U.S. and is widely used to 

inform and craft policy.  This study follows other ecological studies of rural crime patterns and use the UCR data 

(e.g., Wilkinson 1984a, 1984b; Petee and Kowalski 1993; Mencken and Barnett 1999; Rephann 1999; Osgood 

and Chambers 2000; Barnett and Mencken 2002; Lee and Bartkowski 2004; Bouffard and Muftic 2006; Authors, 

2007; and Li 2009).   We do not model aggregate violent and property crime rates because it has been suggested 

within the literature that these measures introduce aggregation bias into the analysis.  Rather we model murders, 

forcible rapes, robberies, assaults, burglary, larceny and motor vehicle rates (number of incidents dividend by 

population adjusted to 10,000 persons) using an average of annual crime data for 2008, 2007 and 2006.  By 

taking an average any unusual spikes in the annual crime data are removed, particularly for violent crime.  Once 

missing data is accounted for the final sample size is 314 rural counties in the U.S. Midwest.  Much of the 

missing data comes from gaps in the FBI UCR reports. 

 

 

Empirical Results 

 
There are three sets of results to be discussed.  The first is the full specification using the posterior mean 

(weighted average of the posterior means in the separate models) coefficient for each variable included in our set 

of variables (i.e., continuous).  Second, we identify the frequency of variables that are included in models that 

have a posterior probability greater than one percent.  We elected to retain only those variables that appeared in 

each model that met the one percent threshold (i.e., discrete).  Finally, we use the single model with the highest 

posterior probability to determine which variables are to be further analyzed (i.e., discrete).  For reporting each 
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of the three set of results are reported by the seven types of crime analyzed here.  For the weighted average of 

the posterior means results we report only those variables that had a significance level of 90 percent or higher.  

The full results for the full specification with the posterior means along with the full frequency analysis are 

provided in an Appendix to the study. 

 
Violent Crime     Consider first the results for the murder rate (Table 1).  Of the 43 variables that are examined 

only four are consistently identified by the BMA approach as important to rural murder rates in the Midwest: 

population density, per capita unemployment insurance, percent of the population Caucasian and the social 

capital index.  Two of the results are somewhat surprising, higher population densities and unemployment 

insurance payments in Midwestern rural counties are associated with lower murder rates.  These two results are 

unexpected because the common theoretical understanding is that higher population density creates greater 

opportunities for conflict and crime.  At the same time per capita unemployment insurance income is an 

alternative measure of unemployment which should be associated with higher crime, but for the rural Midwest 

and murder rates the opposite appears to hold.  Interestingly the ethnic diversity index, which is the most 

consistent metric with respect to the theoretical frameworks outline above, does not appear to influence the rural 

murder rates, but a higher share of the county population that is Caucasian is associated with lower murder rates.  

But at the same time the percent of the population that is African-American or Hispanic does not enter into the 

analysis.   The most interesting result is the negative influence social capital, proxied by our Social Capital 

Index, has on rural crime rates.  This result is most consistent with theory. 

 Only two other variables appear to have some role in explaining Midwestern rural murder rates: earnings 

per job, which is one of several variables potential measures of income, and the percent of households living in 

multi-family developments.  Here again, both variables have relationships with murder rates opposite what we 

expected given the theory.  One would expect higher income levels would be associated with lower crime, 

murder in this case, but the data suggests the opposite holds.  Following the same logic as population density we 

expected that more people living in compacted areas, such as multi-family residential developments like 

apartment buildings, would increase conflict and crime.  The rural data supports the opposite.  Three other 

variables that are in the highest posterior probability model are not statistically significant when the final model 

is estimated via least squares.  Finally, the percent of variance in the rural crime rate is relatively low ranging 

from about 12 to 18 percent, but this is fairly consistent with other studies examining the murder rate. 

 Rape is generally very difficult to model empirically because of the nature of the crime.  But for the 

Midwestern rural data, the BMA approach identified several potential drivers of rape (Table 2).Based on the R
2
 

the percent variation in rural rape explained by the three BMA derived models range from 21 to 33 percent.  

There are seven variables that are consistently identified as associated with rural rape: per capita income from 

income maintenance programs, percent of the population that is Caucasian, percent of those over the age of 25 

with a high school education, percent change in Medicare payments, percent of houses that are owner occupied, 

percent change in the gini coefficient of income equality and the dummy variable if the county is adjacent to a 

metro area.  It is important to note that the stability of statistical significance for percent of the population 

Caucasian and the metro adjacency dummy variable is weak across the three specifications suggesting that these 

two results are tenuous at best. 

 What is interesting here is that higher levels of all these seven variables are positively related to rural 

rape rates.  These positive relations is as expected given the theory for per capita income from income 

maintenance programs, a proxy measure for poverty, and increases in income inequality (rising gini coefficients) 

and perhaps the adjacency to metro areas.It is interesting to note that the poverty rate is identified by two of the 

ways to interpret the BMA approach (i.e., the highest posterior probability as well as the highest frequency 

interpretations) but when the models are estimated with least squares poverty rate becomes statistically 

insignificant.  It is not clear why rural counties in the Midwest with higher home owner occupancy rates, 

education rates measured by high school education, or increases in Medicare payments would be associated with 

higher rates of rape.  Other variables that were also identified by one of the three ways to use the results of the 

BMA approach include percent change in earnings per job, percent change in number of jobs, and change in the 
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unemployment rate.  The first two could be interpreted as metrics of economic growth and higher levels are 

associated with higher rates of rape.  Increases in the unemployment rate also appears to be associated with 

higher rates of rape and this result is consistent with theory but the unemployment rate by itself does not appear 

to influence rape. 

 The results for rural Midwestern robberies are presented in Table 3.  Out of 43 potential variables only 

one variable appears in all three interpretation of the BMA analysis: percent of income from income maintenance 

programs, a proxy or alternative measure of poverty.  Higher levels of payments from these programs are 

associated with higher rates of robbery which is consistent with theoretical expectations.  Only one other 

variable appears to be related to rural robberies, net migration but in a direction that is not consistent with 

theoretical expectations.  One would expect that counties experiencing higher levels of net migration (i.e., net in-

migration) would experience changes in the social structure of the community resulting in conflict and increases 

in crime.  The data do not support this interpretation. 

The results for the final category of violent crime examined, assaults, are presented in Table 4.  Percent 

of the variation in assaults explained ranges from about 33 to 37 percent, again using the R
2
, which is consistent 

with most studies of rural crime rates. Six variables are consistently found to influence Midwestern rural assault 

rates:  percent change in per capita income, earnings per job, percent of the population between the age of 15 and 

24, residential stability measured by percent of households in the same house between 1995 and 2000, as well as 

the percent of households living in multi-unit housing developments and per capita local government general 

revenues.  Changes in per capita income tends to be associated with higher levels of assaults but higher levels of 

each of the other five variables are all tied to lower levels of rural assaults.  This result is consistent with theory 

in terms of earnings per jobs and residential stability, but the youth measure and multi-unit living arrangements 

are not consistent with theory.   

There are three additional variables that are identified in the highest posterior probability model that are 

statistically significant via the least squares estimated assaults model.  These include percent of the population 

over age 75, percent of the population that is Caucasian and the Ethnic Diversity Index with each having a 

negative estimated coefficient.   The result for an older population is as expected but the result for ethnic 

diversity is unexpected.  Social disorganization theory suggests that higher ethnic diversity heightens the 

potential for conflict and hence crime.  For the rural Midwest this does not appear to be the case.  This latter 

result coupled with the negative influence a higher share of the population that is Caucasian has on assaults 

suggest that ethnicity plays a complex role that is not being cleanly captured by our measures. 

 Several conclusions can be drawn from these results on the four components of violent crime examined 

here.  First, given that we introduced 43 separate variables into the analysis only a small handful of variables are 

consistent with the rural violent crime data.  Many socioeconomic characteristics that theory predicts should be 

important determinants of violent crime tend to play a secondary role.  The theoretical perspective that 

“everything matters” can be challenged based on these results, at least for rural violent crime in the Midwest.  

Second, there is very little overlap in the relevant variables across the four difference types of violent crime.  

Thus, what appears to drive one type of violent crime does not necessarily drive other types of violent crime.  

This also suggests that attempts to model total violent crime may introduce aggregation bias into the analysis.  

Finally, the numerous results are not consistent with theoretical predictions.  This speaks less to the relatively 

few variables that are consistently help explain the underlying data but more to the direction (negative or 

positive) of the relationship. 

 
Property Crime      Consider first the burglary rate for Midwestern rural counties (Table 5).  The R

2
 ranges from 

0.2894 to 0.3419 which means that the models explains about a third of the variation in burglary rates.  Six 

variables are consistent across all three ways to interpret the BMA approach: change in the poverty rate, percent 

of the population between the ages of 15 and 24, residential stability, percent of households living in multi-unit 

housing developments, change in income inequality and social capital.  Three of the variables have directional 

relationships with burglary rates that are consistent with theory.  For example,a higher level of social capital as 

measured by our Index is associated with lower burglary rates as is residential stability.  In addition, rising levels 
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of income inequality are associated with higher burglary rates.   Theory tells us that increases in poverty should 

be linked to higher crime, but the data suggests the opposite; increases in the poverty rateare tied to lower 

burglary rates.  Theory would also suggest that higher concentrations of people living in close proximity, such as 

multi-unit residential developments, should increase the likelihood of conflict and crime.  But the rural data 

examined in this study suggests the opposite is true.  There is also some evidence that growth in earnings per job 

will lower burglary rates which is consistent with theoretical expectations.   

Finally, there is again some evidence that a larger share of the population that speaks a language other 

than English at home is associated with lower burglary rates.  This latter result is not consistent with what theory 

would suggest.  In the same line as ethnic diversity theory would suggest that more people that either do not 

speak English or English is a second language should create more opportunities for conflict and crime.  But the 

rural data does not this line of thinking.  This result is particularly important to the rural Midwest where there is 

a growing Hispanic population.  A widely held concern is that the growth in the Hispanic population is placing 

upward pressure on crime.  But this latter empirical result coupled with the lack of the share of the population 

that is Hispanic entering into any type of crime models challenges this perception.   

 The larceny results for the rural Midwest are provided in Table 6.  Based on the R
2
 the models explain 

between about one-quarter and one-fifth of the variation in larceny rates. There are only two variables that are 

consistently identified by the BMA approach; percent change in the number of jobs which has a positive impact 

on larceny rates and percent of households living in multi-unit developments which has a dampening effect.  

Other variables identified by two of the three ways to interpret the BMA results include population density 

which has a positive impact on larceny which is consistent with theory as well as income from income 

maintenance programs, a proxy for poverty, and increases in income inequality also raised larceny rates.  These 

latter three results are consistent with theoretical expectations. 

 The final category of rural crime examined is motor vehicle thefts and results are presented in Table 7.  

As with most of the other crime models between one-quarter and one-fifth of the variation in motor vehicle 

thefts is explained by the BMA derived models.  There are four variables identified including change in the 

unemployment rate, share of population African-American, residential stability and multi-unit housing 

developments.  Each of the four variables has negative coefficients and for residential stability this is as 

expected.  Increasing unemployment rates along with more compact living arrangements via multi-unit 

residential developmentsshould place upward pressure of thefts but the rural data supports the opposite. Other 

variables that are identified by the highest posterior probability and highest frequency models, such as the two 

age profile variables, tend to be statistically insignificant when estimated using least squares. 

 As with violent crime it is somewhat surprising that only a small handful of variables influence rural 

crime property crime rates in the Midwest.  Two variables that are consistent predictors of rural crime are 

residential stability and multi-unit residential living.  Theory tells us that increased residential stability should 

have a dampening effect on crime and the data supports that concept.  But theory tells us that people living in 

more compact settings, such as apartment complexes, should increase the likelihood of conflict and hence crime, 

but the rural data does not support this notion.  Rather more households living in multi-unit develops appears to 

dampen crime.  It may be the case that people living for extended periods of time in the same multi-unit 

residential develop build a stronger sense of community within the development and this places downward 

pressure on crime.  

 There is some evidence that increases in income inequality places upward pressure on crime, as 

predicted by the theory, and while poverty in and of itself does not appear to influence rural property crime there 

is some evidence that higher levels of dependency on income from income maintenance programs, an alternative 

measure of poverty, does place upward pressure on crime.  Also contrary to what theory might predict, a higher 

concentration of young adults (ages 15 to 24) is not associated with higher levels of property crime, but indeed 

may be associated with lower levels of rural crime. 
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Conclusions 

 
There are three problems facing the empirical criminology literature.  First the theory basically concludes that 

“everything matters” when trying to understand crime patterns.  Second, the empirical results are very sensitive 

to how key variables are measured.  For example, the theories tell us that income matters, but how one measures 

income can have significant impacts on the empirical results.  If one finds empirical evidence supporting the 

theory using one measure of income, then finds contradictory evidence using a slightly different measure of 

income, where does that leave us and more importantly where does that leave policy options.Third, while 

“empirical truths” are far and few between what appears to hold for urban does not hold for rural.  Are rural and 

urban so fundamental different that we need distinct and separate theoretical and empirical frameworks? 

From the perspective of empirical modeling the criminology literature is fraught with model uncertainty.  

Model uncertainty exists when theory tells us that “everything matters”, theory produces a “laundry list” of 

potential control variables, or there are multiple ways to measure a particular characteristics and theory provides 

no insights in how to proceed.  Model uncertainty can be a particular problem when a truly interdisciplinary 

approach is taken to study a problem as within the field of criminology.  One approach that is gaining favor as an 

alternative to traditional model selection methods is model averaging.In this study we follow the lead of Bruce 

Western (1996, 2001) and suggest that Bayesian model averaging (BMA) might be one empirical approach to 

help us systematically tackle the problem of model uncertainty.   

 Based on our analysis we find that a common set of variables tend to drive most types of rural crime 

including stability in housing residency, living in multi-unit housing development, changes in poverty, changes 

in income inequality,social capital and youth concentrations.  But the empirical relationships are not always 

consistent with theory or across different types of crime.  For example, theoretically increases in the poverty rate 

should place upward pressure on crime.  The data for the rural Midwest suggests the opposite is true.  

Surprisingly, the one variable that tended to dominate the analysis is not something one would expect from the 

theory: living in multi-unit housing development.  At first glance the theory might suggest that the higher this 

percentage the higher the crime rate; such housing is generally associated with lower levels of wealth, more 

opportunities to commit crime and higher concentrations of people living in close proximity increasing the 

likelihood of conflict.  But the data consistently suggests that the higher the percent of households living in 

multi-unit developments the lower the crime rate across several different types of crime.  Could it be that in rural 

areas these types of living arrangements makes for a stronger sense of community (a form of social capital) and 

the likelihood of formal or informal neighborhood watch efforts.  For example, is a thief more likely to steal 

from a condo located in a higher concentration of other condos or a remote house isolated on 20 acres? 

 A somewhat surprising result is the relatively small number of variables that are consistent with the 

underlying data generating process.  While the model derived with the highest posterior probability tends to have 

a range of variables included, the full specification using the posterior mean coefficients, which is closest in 

intent of the original formulation of BMA, tended to have very few variables and in the case of robberies only 

one variable.   For the rural Midwest data the theoretical conclusion that “everything matters” does not seem to 

apply. 

 The variation in variables introduced into the different types of crime models is an important result.  One 

of the criticisms of much of the earlier empirical work is aggregation bias in how crime is defined and the results 

here confirm that criticism.   As discussed above, there is some overlap in terms of a core set of variables that 

enter the models, there is significant differences in the underlying data generating process for different types of 

violent and property crime.  Our results suggest that care must be taken in how researchers define crime.  

 There are at least two next steps for this work.  First, it is generally accepted in the ecological 

criminology literature that there is spatial dependency in the underlying data generating process (i.e., the third 
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source of model uncertain identified by Western (1996), the stochastic process).  Such dependency is ignored in 

this analysis.  Using spatial estimators such as those suggested by LeSage and Parent (2007) is a logical next 

step.  Alternative a spatial corrected weighted least squares building on the work of Hansen (2007) might be a 

potential next step.  Second, the data analyzed here is limited to the rural Midwest.  There is sufficient evidence 

in the literature that there could be significant spatial heterogeneity in the drivers of rural crime.  In other words 

are the findings for the rural Midwest transferable to the Mississippi Delta or the Mountain West?  Expanding 

the study area to include nonmetro counties for all the lower 48 states is a natural next step. 
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Table 1: Bayesian Model Averaging Results for Midwestern Rural Murder Rates

Bayesian

Highest 

Posterior 

Probability

Highest 

Frequency

(OLS) (OLS)

Population Density -0.00008 -0.00007 -0.00012

(0.0921) (0.0831) (0.0019)

Per Capita Unemployment Insurance Income -0.00006 -0.00006 -0.00006

(0.0081) (0.0033) (0.0003)

Percent of the Population Caucasian -0.00067 -0.00080 -0.00078

(0.0448) (0.0115) (0.0121)

Social Capital Index -0.00469 -0.00455 -0.00396

(0.0019) (0.0023) (0.0067)

Earnings Per Job ─ 0.00000 0.00000

(0.0352) (0.0013)

Percent Change in Per Capita Unemployment Insurance Income 2000-2007 ─ -0.00303 ─

(0.2981)

Creative Class Index 2000 ─ -0.06227 ─

(0.1712)

Percent of Population Age 75 plus ─ -0.00042 -0.00064

(0.6097) (0.4346)

Percent of Households Living in Multiple Unit Housing 2000 ─ -0.00055 ─

(0.0793)

R2
0.1777 0.1394 0.1224

Fstatistic ─ 6.47 8.07

Number of Models 9,256           ─ ─

t-test probability in parentheses  
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Table 2: Bayesian Model Averaging Results for Midwestern Rural Rape Rates

Bayesian

Highest 

Posterior 

Probability

Highest 

Frequency

(OLS) (OLS)

Per Capita Income from Income Maintenance Programs 0.00015 0.00015 0.00016

(0.0117) (0.0140) (0.0093)

Percent of the Population Caucasian 0.00420 0.00377 0.00293

(0.0719) (0.1080) (0.2109)

Percent of those over 25 with a High School Education 0.00345 0.00377 0.00339

(0.0053) (0.0019) (0.0054)

Percent Change in Medicare Payments 2000-2005 0.00293 0.00282 0.00328

(0.0168) (0.0279) (0.0083)

Percent of Houses Owner Occupied 2000 0.00265 0.00269 0.00251

(0.0608) (0.0560) (0.0734)

Percent Change in Gini Coefficient 1989-1999 0.14301 0.16383 0.18576

(0.0575) (0.0304) (0.0125)

Adjacent to a Metro County 0.08704 0.00387 0.00537

(0.0078) (0.7059) (0.6035)

Percent Change in Earnings per Job ─ 0.09265 ─

(0.0749)

Wage and Salaries per Job ─ 0.00000 ─

(0.2084)

Percent Change in Number of Jobs ─ 0.13344 ─

(0.0684)

Unemployment Rate 2006 ─ 0.00524 0.00100

(0.2976) (0.8305)

Percent Change in the Unemployment Rate 2000-2006 ─ 0.06407 0.05367

(0.0064) (0.0144)

Poverty Rate 2004 ─ 0.00341 0.00325

(0.5032) (0.5192)

Percent of the Population African American ─ 0.00506 0.00457

(0.1291) (0.1735)

Gini Coefficient of Income Equality 1999 ─ 0.45021 0.57941

(0.2709) (0.1160)

R2 0.2908 0.3332 0.2131

Fstatistic ─ 14.81 7.86

Number of Models 8,990           ─ ─

t-test probability in parentheses  
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Table 3: Bayesian Model Averaging Results for Midwestern Rural Robbery Rates

Bayesian

Highest 

Posterior 

Probability

Highest 

Frequency

(OLS) (OLS)

Per Capita Income from Income Maintenance Programs 0.00008 0.00011 0.00010

(0.0022) (0.0002) (0.0004)

Net Migration 2000-2006 ─ -0.00003 -0.00003

(0.0206) (0.0250)

Percent Change in Earnings per Job ─ -0.04026 -0.02790

(0.1056) (0.2204)

Unemployment Rate 2006 ─ -0.00231 ─

(0.1965)

Poverty Rate 2004 ─ -0.00245 -0.00204

(0.0962) (0.1615)

Percent of Population Age 75 plus ─ -0.00222 -0.00370

(0.2127) (0.0239)

Percent of the Population Caucasian ─ -0.00119 ─

(0.0995)

Percent of Voters Voting Democratic in 2004 Presidential Election ─ -0.00040 ─

(0.2045)

Social Capital Index ─ -0.00282 -0.00093

(0.3936) (0.7647)

R2 0.1766 0.1368 0.131

Fstatistic ─ 6.35 8.64

Number of Models 7,704           ─ ─

t-test probability in parentheses  
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Table 4: Bayesian Model Averaging Results for Midwestern Rural Assault Rates

Bayesian

Highest 

Posterior 

Probability

Highest 

Frequency

(OLS) (OLS)

Percent Change in Per Capita Income 1.99687 2.13215 2.08438

(0.0000) (0.0001) (0.0001)

Earnings Per Job -0.00002 -0.00002 -0.00002

(0.0089) (0.0051) (0.0005)

Percent of Population Age 15 to 24 -0.04458 -0.04626 -0.03718

(0.0009) (0.0005) (0.0031)

Percent in Same Household 1995-2000 -0.05541 -0.05357 -0.05678

(0.0000) (0.0001) (0.0001)

Percent of Households Living in Multiple Unit Housing 2000 -0.02223 -0.01882 -0.02666

(0.0248) (0.0519) (0.0022)

Per Capita Local Government General Revenues 2002 -0.00015 -0.00015 -0.00014

(0.0007) (0.0010) (0.0007)

Population Density ─ -0.00184 ─

(0.1306)

Percent of Population Age 75 plus ─ -0.04252 ─

(0.0784)

Percent of the Population Caucasian ─ -0.02462 ─

(0.0859)

Ethnic Diversity Index ─ -1.29962 ─

(0.0745)

Percent of Voters Voting Republican in 2004 Presidential Election ─ -0.00249 ─

(0.9827)

Percent of Voters Voting Democratic in 2004 Presidential Election ─ -0.00237 ─

(0.9837)

Adjacent to a Metro County ─ -0.03232 -0.04414

(0.6411) (0.4839)

R2
0.3707 0.3371 0.3325

Fstatistic ─ 12.89 22.63

Number of Models 8,699           ─ ─

t-test probability in parentheses  
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Table 5: Bayesian Model Averaging Results for Midwestern Rural Burglary Rates

Bayesian

Highest 

Posterior 

Probability

Highest 

Frequency

(OLS) (OLS)

Percent Change in Earnings per Job -1.59109 -2.20799 ─

(0.0934) (0.0150)

Percent Change in Poverty Rate 2000-2004 -2.21695 -2.17807 -2.01143

(0.0038) (0.0034) (0.0074)

Percent of Population Age 15 to 24 -0.09230 -0.09230 -0.10664

(0.0312) (0.0339) (0.0153)

Percent in Same Household 1995-2000 -0.05525 -0.05355 -0.05522

(0.0275) (0.0293) (0.0210)

Percent of Households Living in Multiple Unit Housing 2000 -0.09696 -0.09496 -0.09414

(0.0005) (0.0006) (0.0007)

Percent Change in Gini Coefficient 1989-1999 5.65255 5.70870 5.73684

(0.0000) (0.0001) (0.0001)

Social Capital Index -0.38715 -0.38988 -0.43602

(0.0010) (0.0008) (0.0002)

Per Capita Unemployment Insurance Income ─ -0.00295 -0.00180

(0.0603) (0.2280)

Percent of Population Age 75 plus ─ -0.08630 -0.07948

(0.2331) (0.2517)

Percent of the Population African American ─ -0.04163 ─

(0.2289)

Percent of those over 25 with a Bachelor's Degree ─ -0.02731 -0.01891

(0.3609) (0.5224)

Percent of the Population Non-English Speakers at Home 2000 ─ -0.05382 ─

(0.0399)

R2 0.3419 0.3108 0.2894

Fstatistic ─ 12.42 14.76

Number of Models 7,894           ─ ─

t-test probability in parentheses  
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Table 6: Bayesian Model Averaging Results for Midwestern Rural Larceny Rates

Bayesian

Highest 

Posterior 

Probability

Highest 

Frequency

(OLS) (OLS)

Percent Change in Number of Jobs 5.97350 9.62130 9.80829

(0.0156) (0.0001) (0.0001)

Percent of Households Living in Multiple Unit Housing 2000 -0.17978 -0.19342 -0.18488

(0.0007) (0.0002) (0.0001)

Population Density ─ 0.02048 0.02153

(0.0016) (0.0004)

─

Unemployment Rate 2006 0.11897 0.18544

(0.4240) (0.1296)

Per Capita Income from Income Maintenance Programs ─ 0.00283 0.00240

(0.0110) (0.0278)

Percent Change in Medicare Payments 2000-2005 ─ 0.02769 ─

(0.5200)

Per Capita Local Government General Revenues 2002 ─ 0.00049 ─

(0.0451)

Percent of Voters Voting Republican in 2004 Presidential Election ─ 0.02489 ─

(0.2962)

Percent Change in Gini Coefficient 1989-1999 ─ 6.26539 5.84722

(0.0228) (0.0331)

Remote Rural County ─ 1.27046 1.24915

(0.2834) (0.2923)

R2
0.2497 0.2011 0.1962

Fstatistic ─ 8.65 11.60

Number of Models 6,989           ─ ─

t-test probability in parentheses  
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Table 7: Bayesian Model Averaging Results for Midwestern Rural Motor Theft Rates

Bayesian

Highest 

Posterior 

Probability

Highest 

Frequency

(OLS) (OLS)

Percent Change in the Unemployment Rate 2000-2006 -0.21475 -0.23547 -0.30299

(0.0125) (0.0049) (0.0001)

Percent of the Population African American -0.02658 -0.02200 -0.01672

(0.0116) (0.0093) (0.0433)

Percent in Same Household 1995-2000 -0.01758 -0.01635 -0.01976

(0.0029) (0.0049) (0.0002)

Percent of Households Living in Multiple Unit Housing 2000 -0.01899 -0.01716 -0.02335

(0.0054) (0.0065) (0.0001)

Net Migration 2000-2006 ─ -0.00015 ─

(0.1919)

Percent of Population Age 15 to 24 ─ -0.01382 -0.01482

(0.1342) (0.0782)

Percent of Population Age 75 plus ─ -0.02885 -0.01679

(0.1030) (0.2902)

Percent of those over 25 with a High School Education ─ -0.00913 -0.00904

(0.1643) (0.0596)

Percent of the Population Non-English Speakers at Home 2000 ─ -0.01018 ─

(0.1433)

Per Capita Local Government General Revenues 2002 ─ -0.00004 -0.00005

(0.1624) (0.0892)

Gini Coefficient of Income Equality 1999 ─ -0.86147 ─

(0.4269)

Social Capital Index ─ -0.04038 -0.03279

(0.1299) (0.1898)

R2
0.2659 0.2246 0.2115

Fstatistic ─ 8.34 10.06

Number of Models 8,808           ─ ─

t-test probability in parentheses
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Appendix Table 1: BMA Posterior Estimates  Midwest Rural Violent Crime

Murder Rape Robbery  Assault 

Constant 0.24539 (0.0000) -1.37639 (0.0034) 0.15490 (0.0206) 7.57243 (0.0000)

Population Density -0.00008 (0.0921) 0.00003 (0.8698) 0.00000 (0.9913) -0.00132 (0.2769)

Net Migration 2000-2006 0.00000 (0.9406) 0.00000 (0.9999) -0.00002 (0.2643) -0.00001 (0.9729)

Population 0.00000 (0.9679) 0.00000 (0.9729) 0.00000 (0.9584) 0.00000 (0.9947)

Per Capita Income 0.00000 (0.9729) 0.00000 (0.9892) 0.00000 (0.9877) 0.00000 (0.9970)

Percent Change in Per Capita Income -0.00380 (0.8366) 0.02238 (0.7618) -0.00455 (0.9036) 1.99687 (0.0000)

Earnings Per Job 0.00000 (0.1052) 0.00000 (0.9673) 0.00000 (0.9450) -0.00002 (0.0089)

Percent Change in Earnings per Job -0.00439 (0.7428) 0.02398 (0.6413) -0.02241 (0.4496) 0.00427 (0.9924)

Wage and Salaries per Job 0.00000 (0.9570) 0.00000 (0.4232) 0.00000 (0.9655) 0.00000 (0.9704)

Percent Change in Wages and Salary per Job 0.00004 (0.9985) 0.05009 (0.5013) -0.00860 (0.8174) 0.00050 (0.9992)

Number of Jobs 0.00000 (0.9746) 0.00000 (0.9797) 0.00000 (0.9938) 0.00000 (0.9826)

Percent Change in Number of Jobs -0.00031 (0.9858) 0.06965 (0.3372) -0.00022 (0.9949) 0.00053 (0.9991)

Unemployment Rate 2006 -0.00020 (0.8471) 0.00376 (0.4437) -0.00067 (0.7440) 0.00003 (0.9991)

Percent Change in the Unemployment Rate 2000-2006 0.00003 (0.9973) 0.06276 (0.0054) -0.00028 (0.9834) 0.00023 (0.9991)

Per Capita Unemployment Insurance Income -0.00006 (0.0081) 0.00000 (0.9871) -0.00001 (0.8147) -0.00001 (0.9888)

Percent Change in Per Capita Unemployment Insurance Income 2000-2007 -0.00172 (0.5722) -0.00040 (0.9824) 0.00020 (0.9797) -0.05196 (0.5103)

Poverty Rate 2004 0.00004 (0.9633) 0.00329 (0.5251) -0.00126 (0.4356) 0.00062 (0.9808)

Percent Change in Poverty Rate 2000-2004 0.00004 (0.9971) -0.00038 (0.9928) -0.00969 (0.6568) -0.00037 (0.9989)

Per Capita Income from Income Maintenance Programs 0.00000 (0.9869) 0.00015 (0.0117) 0.00008 (0.0022) -0.00004 (0.8953)

Percent Change in Per Capita Income from Income Maintenance Programs -0.00466 (0.5079) -0.00003 (0.9993) -0.00136 (0.9338) -0.00268 (0.9889)

Creative Class Index 2000 -0.03554 (0.4795) -0.00029 (0.9991) 0.01408 (0.9225) 0.00418 (0.9977)

Bohemian Class Index 2000 -0.04093 (0.9168) 0.52637 (0.7584) 0.02970 (0.9728) 0.00185 (0.9999)

t-test probability in parentheses  
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Appendix Table 1 (cont): BMA Posterior Estimates  Midwest Rural Violent Crime

Murder Rape Robbery  Assault 

Percent of Population Age 15 to 24 -0.00021 (0.6592) 0.00008 (0.9684) -0.00038 (0.7257) -0.04458 (0.0009)

Percent of Population Age 75 plus -0.00042 (0.6531) 0.00000 (0.9997) -0.00272 (0.1438) -0.03007 (0.2123)

Percent of the Population Caucasian -0.00067 (0.0448) 0.00420 (0.0719) -0.00095 (0.2000) -0.01333 (0.3605)

Percent of the Population African American 0.00001 (0.9948) 0.00540 (0.1035) 0.00007 (0.9577) -0.01150 (0.5652)

Percent of the Population Hispanic 0.00000 (0.9948) 0.00100 (0.6078) -0.00034 (0.8121) -0.00951 (0.4567)

Ethnic Diversity Index 0.00007 (0.9977) 0.00617 (0.9540) 0.00192 (0.9911) -0.21040 (0.7768)

Percent of those over 25 with a High School Education -0.00007 (0.7939) 0.00345 (0.0053) 0.00004 (0.9563) 0.00034 (0.9687)

Percent of those over 25 with a Bachelor's Degree -0.00004 (0.9182) 0.00001 (0.9963) -0.00014 (0.8758) 0.00051 (0.9627)

Percent of the Population Foreign Born 2000 0.00001 (0.9928) 0.00015 (0.9703) -0.00052 (0.7791) -0.00583 (0.8315)

Percent of the Population Non-English Speakers at Home 2000 -0.00001 (0.9791) 0.00000 (0.9982) -0.00009 (0.9152) -0.00014 (0.9871)

Percent in Same Household 1995-2000 -0.00004 (0.9070) 0.00000 (0.9986) 0.00003 (0.9639) -0.05541 (0.0000)

Percent Change in Medicare Payments 2000-2005 -0.00005 (0.8760) 0.00293 (0.0168) -0.00030 (0.6437) 0.00000 (0.9999)

Percent of Houses Owner Occupied 2000 -0.00001 (0.9815) 0.00265 (0.0608) -0.00040 (0.6983) 0.00001 (0.9997)

Percent of Households Living in Multiple Unit Housing 2000 -0.00048 (0.1746) 0.00000 (0.9994) -0.00059 (0.5769) -0.02223 (0.0248)

Per Capita Local Government General Revenues 2002 0.00000 (0.9888) 0.00000 (0.9998) 0.00000 (0.9808) -0.00015 (0.0007)

Percent of Voters Voting Republican in 2004 Presidential Election -0.00090 (0.8423) 0.00107 (0.9293) 0.00026 (0.9625) -0.00664 (0.9539)

Percent of Voters Voting Democratic in 2004 Presidential Election -0.00092 (0.7971) 0.00092 (0.9626) 0.00008 (0.6201) -0.00662 (0.9554)

Gini Coefficient of Income Equality 1999 -0.01545 (0.7669) 0.45344 (0.2563) 0.05207 (0.8191) -0.10212 (0.9460)

Percent Change in Gini Coefficient 1989-1999 -0.00080 (0.9649) 0.14301 (0.0575) 0.00101 (0.9793) 0.00027 (0.9996)

Social Capital Index -0.00469 (0.0019) 0.00000 (1.0000) -0.00320 (0.3261) 0.00000 (1.0000)

Adjancent to a Metro County 0.00000 (1.0000) 0.08704 (0.0078) -0.00013 (0.9939) 0.03841 (0.8528)

Remote Rural County 0.00000 (1.0000) 0.00000 (1.0000) 0.00048 (0.9272) 0.00000 (1.0000)

R2 0.1777 0.2908 0.1766 0.3707

Number of Models 9,256          8,990          7,704          8,699          

t-test probability in parentheses  
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Appendix Table 2: BMA Posterior Estimates  Midwest Rural Property Crime

Burglary Larceny Motor

Constant 2.09281 (0.0006) -10.98980 (0.1489) 2.92173 (0.0000)

Population Density 0.00004 (0.9929) 0.01060 (0.1294) 0.00001 (0.9899)

Net Migration 2000-2006 -0.00022 (0.6592) -0.00017 (0.8561) -0.00011 (0.3583)

Population 0.00000 (0.9984) 0.00000 (0.9914) 0.00000 (0.9888)

Per Capita Income 0.00000 (0.9828) 0.00000 (0.9791) 0.00000 (0.9538)

Percent Change in Per Capita Income 0.00485 (0.9977) 0.00186 (0.9995) -0.00839 (0.9786)

Earnings Per Job 0.00000 (0.9681) -0.00001 (0.8540) 0.00000 (0.9853)

Percent Change in Earnings per Job -1.59109 (0.0934) -0.57402 (0.7503) -0.01049 (0.9603)

Wage and Salaries per Job 0.00000 (0.9968) -0.00001 (0.9053) 0.00000 (0.9964)

Percent Change in Wages and Salary per Job -0.67077 (0.6188) -0.81368 (0.7498) -0.00001 (1.0000)

Number of Jobs 0.00000 (0.9900) 0.00000 (0.9962) 0.00000 (0.9789)

Percent Change in Number of Jobs 0.00033 (0.9998) 5.97350 (0.0156) 0.00021 (0.9994)

Unemployment Rate 2006 0.00001 (0.9999) 0.10790 (0.4597) -0.00015 (0.9931)

Percent Change in the Unemployment Rate 2000-2006 0.00032 (0.9993) -0.00162 (0.9981) -0.21475 (0.0125)

Per Capita Unemployment Insurance Income -0.00227 (0.1607) 0.00000 (0.9994) -0.00011 (0.7748)

Percent Change in Per Capita Unemployment Insurance Income 2000-2007 0.00035 (0.9988) 0.00370 (0.9938) 0.00104 (0.9897)

Poverty Rate 2004 -0.00536 (0.9075) -0.02006 (0.8733) 0.00020 (0.9922)

Percent Change in Poverty Rate 2000-2004 -2.21695 (0.0038) -0.52048 (0.7238) -0.10184 (0.5950)

Per Capita Income from Income Maintenance Programs 0.00000 (0.9998) 0.00233 (0.1074) 0.00000 (0.9991)

Percent Change in Per Capita Income from Income Maintenance Programs 0.00243 (0.9966) -0.01074 (0.9914) 0.00119 (0.9930)

Creative Class Index 2000 -0.30609 (0.9408) 0.25576 (0.9702) -0.00136 (0.9984)

Bohemian Class Index 2000 0.02690 (0.9993) 5.69966 (0.9317) 0.00273 (0.9997)

t-test probability in parentheses  
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Appendix Table 2 (cont): BMA Posterior Estimates  Midwest Rural Property Crime

Burglary Larceny Motor

Percent of Population Age 15 to 24 -0.09230 (0.0312) -0.05819 (0.4571) -0.01465 (0.1226)

Percent of Population Age 75 plus -0.09072 (0.2099) -0.04882 (0.7164) -0.02388 (0.1628)

Percent of the Population Caucasian 0.00085 (0.9850) 0.03136 (0.5635) -0.00472 (0.6557)

Percent of the Population African American -0.01573 (0.6643) -0.00547 (0.9491) -0.02658 (0.0116)

Percent of the Population Hispanic -0.00070 (0.9857) -0.01909 (0.8133) -0.00223 (0.8180)

Ethnic Diversity Index -0.14986 (0.9130) -0.02800 (0.9755) -0.00638 (0.9645)

Percent of those over 25 with a High School Education 0.00119 (0.9666) 0.00346 (0.9453) -0.00809 (0.1908)

Percent of those over 25 with a Bachelor's Degree -0.02099 (0.4974) -0.00028 (0.9959) -0.00310 (0.6953)

Percent of the Population Foreign Born 2000 -0.00072 (0.9929) -0.03175 (0.8404) -0.00017 (0.9926)

Percent of the Population Non-English Speakers at Home 2000 -0.04242 (0.1131) -0.00241 (0.9648) -0.00824 (0.2280)

Percent in Same Household 1995-2000 -0.05525 (0.0275) -0.03826 (0.4102) -0.01758 (0.0029)

Percent Change in Medicate Payments 2000-2005 -0.00002 (0.9995) 0.01281 (0.7682) 0.00000 (0.9999)

Percent of Houses Owner Occupied 2000 0.00002 (0.9996) -0.00002 (0.9998) -0.00119 (0.8944)

Percent of Households Living in Multiple Unit Housing 2000 -0.09696 (0.0005) -0.17978 (0.0007) -0.01899 (0.0054)

Per Capita Local Government General Revenues 2002 0.00000 (0.9985) 0.00026 (0.2867) -0.00004 (0.1482)

Percent of Voters Voting Republican in 2004 Presidential Election 0.07309 (0.8438) 0.15676 (0.5481) 0.01047 (0.8983)

Percent of Voters Voting Democratic in 2004 Presidential Election 0.07564 (0.8286) 0.14504 (0.8376) 0.01228 (0.8750)

Gini Coefficient of Income Equality 1999 0.02926 (0.9960) -0.61779 (0.9281) -0.49351 (0.6207)

Percent Change in Gini Coefficient 1989-1999 5.65255 (0.0000) 4.28191 (0.1214) 0.00010 (0.9998)

Social Capital Index -0.38715 (0.0010) -0.30213 (0.1740) -0.03999 (0.1400)

Adjancent to a Metro County 0.00000 (1.0000) 0.00000 (1.0000) 0.00000 (1.0000)

Remote Rural County 0.00000 (1.0000) 0.21796 (0.5729) 0.00000 (1.0000)

R2 0.3419 0.2497 0.2659

Number of Models 7,894          6,989           8,808          

t-test probability in parentheses  
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Appendix Table 3: Frequency of BMA Selection with P(Mj|y) Posterior Probability Greater than 1%.

Murder Rape Robbery  Assault Burglary Larceny Motor

Population Density 100.0% 13.3% 0.0% 90.9% 0.0% 100.0% 0.0%

Net Migration 2000-2006 0.0% 0.0% 100.0% 0.0% 33.3% 0.0% 88.9%

Population 0.0% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0%

Per Capita Income 0.0% 0.0% 14.3% 0.0% 0.0% 9.1% 11.1%

Percent Change in Per Capita Income 28.6% 13.3% 0.0% 100.0% 0.0% 0.0% 0.0%

Earnings Per Job 100.0% 6.7% 0.0% 100.0% 5.6% 0.0% 0.0%

Percent Change in Earnings per Job 14.3% 46.7% 100.0% 0.0% 94.4% 0.0% 11.1%

Wage and Salaries per Job 0.0% 86.7% 0.0% 0.0% 0.0% 0.0% 0.0%

Percent Change in Wages and Salary per Job 0.0% 40.0% 42.9% 0.0% 22.2% 0.0% 0.0%

Number of Jobs 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Percent Change in Number of Jobs 0.0% 66.7% 0.0% 0.0% 0.0% 100.0% 0.0%

Unemployment Rate 2006 57.1% 100.0% 71.4% 0.0% 0.0% 100.0% 0.0%

Percent Change in the Unemployment Rate 2000-2006 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 100.0%

Per Capita Unemployment Insurance Income 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 33.3%

Percent Change in Per Capita Unemployment Insurance Income 2000-2007 42.9% 0.0% 0.0% 63.6% 0.0% 0.0% 0.0%

Poverty Rate 2004 0.0% 100.0% 100.0% 0.0% 27.8% 18.2% 0.0%

Percent Change in Poverty Rate 2000-2004 0.0% 0.0% 14.3% 0.0% 100.0% 0.0% 77.8%

Per Capita Income from Income Maintenance Programs 0.0% 100.0% 100.0% 9.1% 0.0% 100.0% 0.0%

Percent Change in Per Capita Income from Income Maintenance Programs 85.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Creative Class Index 2000 71.4% 0.0% 0.0% 0.0% 0.0% 36.4% 0.0%

Bohemian Class Index 2000 14.3% 33.3% 0.0% 0.0% 0.0% 9.1% 0.0%

Percent of Population Age 15 to 24 57.1% 0.0% 0.0% 100.0% 100.0% 0.0% 100.0%

Percent of Population Age 75 plus 100.0% 0.0% 100.0% 90.9% 100.0% 0.0% 100.0%

Percent of the Population Caucasian 100.0% 100.0% 85.7% 54.5% 11.1% 63.6% 33.3%

Percent of the Population African American 0.0% 100.0% 0.0% 36.4% 38.9% 0.0% 100.0%

Percent of the Population Hispanic 0.0% 33.3% 0.0% 36.4% 0.0% 0.0% 0.0%

Ethnic Diversity Index 0.0% 0.0% 0.0% 18.2% 0.0% 0.0% 11.1%

Percent of those over 25 with a High School Education 42.9% 100.0% 0.0% 9.1% 0.0% 0.0% 100.0%

Percent of those over 25 with a Bachelor's Degree 0.0% 0.0% 0.0% 9.1% 100.0% 0.0% 44.4%

Percent of the Population Foreign Born 2000 0.0% 0.0% 42.9% 27.3% 0.0% 0.0% 0.0%

Percent of the Population Non-English Speakers at Home 2000 14.3% 0.0% 0.0% 0.0% 94.4% 0.0% 88.9%

Percent in Same Household 1995-2000 28.6% 0.0% 0.0% 100.0% 100.0% 0.0% 100.0%

Percent Change in Medicate Payments 2000-2005 14.3% 100.0% 42.9% 0.0% 0.0% 54.5% 0.0%

Percent of Houses Owner Occupied 2000 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Percent of Households Living in Multiple Unit Housing 2000 85.7% 0.0% 0.0% 100.0% 100.0% 100.0% 100.0%

Per Capita Local Government General Revenues 2002 0.0% 0.0% 0.0% 100.0% 0.0% 90.9% 100.0%

Percent of Voters Voting Republican in 2004 Presidential Election 14.3% 53.3% 0.0% 63.6% 38.9% 72.7% 55.6%

Percent of Voters Voting Democratic in 2004 Presidential Election 14.3% 53.3% 57.1% 63.6% 38.9% 18.2% 22.2%

Gini Coefficient of Income Equality 1999 14.3% 100.0% 0.0% 0.0% 11.1% 0.0% 44.4%

Percent Change in Gini Coefficient 1989-1999 0.0% 100.0% 0.0% 0.0% 100.0% 100.0% 0.0%

Social Capital Index 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0%

Adjacent to a Metro County 0.0% 100.0% 0.0% 100.0% 0.0% 0.0% 0.0%

Remote Rural County 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0%  
 


